Instruction Manual

4-20 mA Vibration Sensor Type

v1.32.034

Manfred Weber

Metra Mess- und Frequenztechnik in Radebeul e.K.

Meissner Str. 58 - D-01445 Radebeul

Tel. +49-351 836 2191 Fax +49-351 836 2940

Email: Info@MMF.de Internet: www.MMF.de

Revision:

Edition	Firmware	Revision
15.11.2021	v1.32.030	new chapter: 4.8 Total Accuracy
20.01.2022		Change: 4.2.2 Sensor Cable ; 4.2.3 Grounding Concept
20.01.2022	v1.32.031	new sensor types with 5 m/s ² range
		Increase of maximum dynamic range for types KSI84Ax with
		$LP \le 1 \text{ kHz}$: see chapter 4.5.5
13.05.2022	v1.32.033	Order option: Current output limited to 20 mA
		Change of update rate for PEAK measurement: 0.5 s
		New sensor types KSI84D-3-300-xx for displacement measurement
13.06.2022	v1.32.034	Update rate at types KSI84AR-1k-10k-xxx: 62,5 ms
11.04.2023		Mechanical Characteristics Sensor tightening torque
20.06.2023		Dynamic Range: Adjustment for KSI84D

Published by:

Manfred Weber Metra Mess- und Frequenztechnik in Radebeul e.K. Meißner Str. 58 D-01445 Radebeul

 Tel.
 0351-836 2191

 Fax
 0351-836 2940

 Email
 Info@MMF.de

 Internet
 www.MMF.de

Note: The latest version of this document can be found at: <u>https://www.mmf.de/product_literature.htm</u>

All rights reserved, including those of translation. Subject to modifications. © 2021 Manfred Weber Metra Mess- und Frequenztechnik in Radebeul e.K.

Edition: 20.06.2023

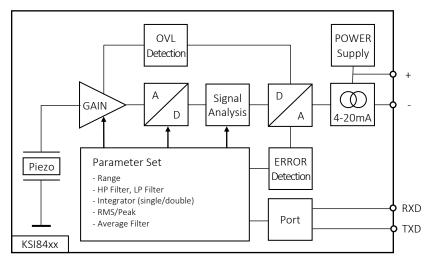
Contents

		pose4
2	Fun	ction4
3	Тур	e Selection5
	3.1	Frequency Range (HP, LP)5
		Measuring Range
		Type Code
4	Sen	sor Operation7
	4.1	Sensor Mounting7
		Sensor Connection
		4.2.1 Connection to the Loop Supply
		4.2.2 Sensor Cable
		4.2.3 Grounding Concept
	4.3	Measuring the sensor current9
		4.3.1 Maximum Load Resistance RL10
	4.4	Sensor Self-Test
	4.5	Measuring Mode10
		4.5.1 Sensitivity <i>B</i> _i 10
		4.5.2 Calculation of measured quantity11
		4.5.3 Offset Current and Noise11
		4.5.4 Linear Measuring Range xminxmax12
		4.5.5 Dynamic Range12
		Overload Display13
	4.7	Measurement Acquisition13
		4.7.1 Averages Filter - Settling Time13
		Total Accuracy14
	4.9	Error Messages15
		4.9.1 Steps to Fix a LOOP Error15
5	Тес	hnical Data16
	5.1	
		Electrical Characteristics16
		Mechanical Characteristics16
		Environmental Characteristics17
	5.5	Type Tables17
		5.5.1 Acceleration, RMS17
		5.5.2 Acceleration, PEAK18
		5.5.3 Velocity, RMS
		5.5.4 Velocity, PEAK
	_	5.5.5 Displacement
_		Dimensions
		ed Warranty21
D	ecla	ration of Conformity21

1 Purpose

The vibration sensors of the KSI84xx family are used to measure vibration acceleration, velocity or displacement on machines and objects.

The sensors measure the vibration amplitude within a specified frequency range in axial sensor direction and outputs the measuring result as a 4-20 mA current loop signal. The sensor is supplied with power via the same signal line.


The sensor parameters are adjustable. There are different types for different applications in several measuring ranges. The sensors comply with the specifications for vibration measuring devices according to <u>ISO 2954</u>.

Possible applications are:

- 1. Measurement of the smooth running of rotating machines and reciprocating machines according to ISO 10816 / ISO 20816.
- 2. Measurement of bearing vibrations according to VDI 3832.
- 3. Measurement of vibrations in defined frequency ranges.

The sensors are suitable for use in harsh environmental conditions. The housing is double shielded, electrically isolated and complies with protection grade IP68.

2 Function

The sensors of the KSI84xx family are piezoelectric vibration sensors.

A piezoelectric accelerometer is used as the sensor element. Its electrical output signal is first amplified and digitized.

The signal analysis is digital. The signal is filtered (HP, LP), optionally integrated and the amplitude value is calculated, either as RMS or PEAK value. Finally, the amplitude value is converted into a 4-20 mA current loop signal with a 16 bit DAC.

Either the acceleration (without integrator), the velocity (integrator) or the displacement (double integrator) of the vibration can be measured.

In addition, proper sensor function and input signal are monitored. Defects or overloads are signaled by an <u>error current value</u>.

Before delivery, the sensor is parameterized according to the <u>type code</u> selected by the customer.

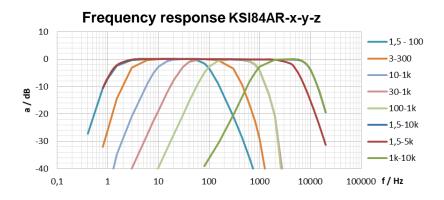
3 Type Selection

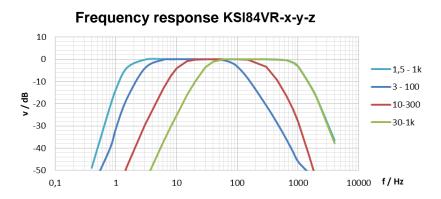
There are five different basic types, which differ in the measured quantity (Q) and the amplitude mode (M).

Sensor type		KSI84AR	KSI84AP	KSI84VR KSI84VP		KSI84D
Quantity	Q	Acceleration		Velo	ocity	Displacement
Mode	М	RMS	PEAK	RMS	PEAK	PEAK-PEAK

Furthermore, the types differ in the measured frequency range (HP, LP) and in their measuring range.

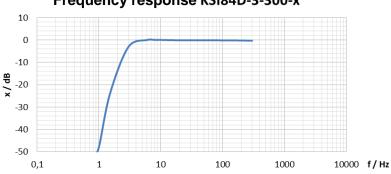
3.1 Frequency Range (HP, LP)


The used frequency range of a sensor type is described by the values HP and LP in the type table.


HP is the -3 dB cutoff frequency of the high pass filter and determines the lower cutoff frequency of the sensor.

LP is the -3 dB cutoff frequency of the low pass filter and determines the upper cutoff frequency of the sensor.

All frequencies between the lower and upper cutoff frequency have an impact to the measuring result.


Sensors measuring **acceleration** have a 2nd order IIR high pass and low pass filter with a stopband attenuation of -40 dB/decade.

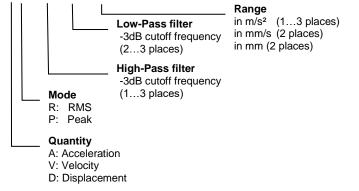
The HP filter of the **velocity** sensor types has a stopband attenuation of -50 dB/decade, the LP filter has a stopband attenuation of - 40 dB/decade.

The HP filter of the **displacement** sensor types has a stopband attenuation of -60 dB/decade. The upper cut-off frequency is 300 Hz. It results from the significant decrease of the <u>dynamic range</u> with increasing frequency. At 300 Hz the maximum current amplitude is only 1 % of the <u>measuring range</u>.

Frequency response KSI84D-3-300-x

3.2 Measuring Range

The "Range" value specified in the <u>type table</u> corresponds to the value of the measured quantity at which the sensor current is 20 mA. At this value, the sensor output is set to 100 %.


The measurement result should always be within the <u>linear measuring range</u> of the sensor. It ranges from 4.16 mA (1 %) to 22 mA (112.5 %).

If 22 mA cannot be processed by the used measuring instrument, the output current can optionally be limited to 20 mA (specify when ordering if necessary).

3.3 Type Code

The type code is printed on the sensor housing. It is composed according to the following key. Note that only integer values without decimal places are printed in the type code.

KSI84QM-HHH-LLL-RRR

4 Sensor Operation

4.1 Sensor Mounting

The choice of an appropriate measuring point on the target is important for accurate vibration measurement. It can be helpful to consult a specialist in machine monitoring for this purpose.

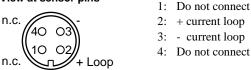
In general, it is advisable to measure vibrations as near as possible to their source. This minimizes errors by transmitting mechanical components.

Suitable measuring points are rigid components, for instance the housing of bearings or gearboxes. Not recommended for vibration measurement are lightweight, flexible and soft components. The standard ISO 10816-1 gives some recommendations for suitable measuring points.

The KSI84xx is mounted via the M8 threaded hole in the sensor base. The sensor can either be mounted directly using the M8 mounting stud <u>type 043</u> or with the help of the mounting pad <u>type 229</u> with M8 stud by epoxy cementing on the object.

Alternatively, the senor can also be fixed by the magnetic base <u>type 208</u> (M8) or <u>type 008</u> (M5) in combination with the thread adapter <u>type 044</u>.

The sensor should be in touch with the target by its complete mounting surface. Rough, scratched or too small measuring points may cause errors. Cast or varnish surfaces are unsuited.


A thin layer of silicone grease between the mounting surfaces also improves vibration transmission.

4.2 Sensor Connection

4.2.1 Connection to the Loop Supply

The sensor is connected via PIN 2 (+) and PIN 3 (-) of the output connector to the loop supply voltage. PIN 1 and PIN 4 are not to be connected.

The loop supply voltage U_S should be within 10 to 30 V and free of noise.

It is recommended to select a lower voltage at ambient temperatures above 80 $^{\circ}$ C in order to reduce self-heating due to the power dissipation inside the sensor.

4.2.2 Sensor Cable

We recommend to use a two-core shielded cable for best EMI protection.

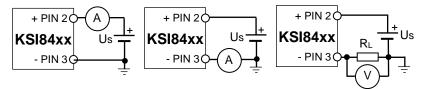
Alternatively, the sensor can also be connected with a four-core, shielded cable with a moulded plug. The unused wires must remain open.

Metra offers the following connection accessory:

- <u>Type 080G/W</u>: Binder 713, female, straight (G) or angled (W) with screw terminals for connection an existing sensor cable; protection grade IP67
- <u>Type 082-B713G-PIG-x</u> or <u>type 082-B713G-PIG-x</u>: Shielded sensor cable, x m length with Binder 713, female, straight (G) or angled (W) and cable end sleeves; protection grade IP67

Make sure that the cable is not routed alongside AC power lines and in adequate distance to potential EMI sources. It should cross AC power lines at right angles.

4.2.3 Grounding Concept


The sensor has an outer and an inner housing shield to protect the electronics against EMI. Both housings are electrically isolated from each other.

The inner housing is connected to the potential of the negative loop line via PIN3. The outer sensor housing is either connected directly to the device potential at the mounting location via the M8 thread (case 1) or obtains its reference potential via the cable shield (case 2).

4.3 Measuring the sensor current

The following figures show possibilities to measure the sensor current.

The sensor current can be measured either directly by a current meter connected in series or indirectly by measuring the voltage drop across the load resistance R_L between PIN 3 and the negative terminal.

Choose the connection shown in the first figure for best EMI protection.

The voltage drop u_L across R_L is calculated from the sensor current as follows:

$$u_L = R_L \cdot i_{Sensor}$$

The following table shows the voltage drop u_L as a function of the sensor current at different load resistors R_L .

		Voltage drop over R _L				
Excitation	i sensor	125 Ω	250 Ω	500 Ω		
0 %	4 mA	0,5 V	1 V	2 V		
10 %	5,6 mA	0,7 V	1,4 V	2,8 V		
20 %	7,2 mA	0,9 V	1,8 V	3,6 V		
50 %	12,0 mA	1,5 V	3 V	6 V		
100 %	20,0 mA	2,5 V	5 V	10 V		
112,5 %	22,0 mA	2,75 V	5,5 V	11 V		

4.3.1 Maximum Load Resistance RL

The maximum load resistance R_L depends on the loop supply voltage U_S . It results from the fact that the sensor requires at least 7 V at the highest possible loop current.

The calculation is as follows:

$$R_L \le \frac{U_S - 7 V}{24 mA} \approx 40 \cdot (U_S - 7) * ohm \qquad \begin{array}{l} R_L : \text{Load resistance of current loop} \\ U_S : \text{Loop supply voltage in V} \end{array}$$

It can be seen that the load resistance R_L must not exceed 680 Ω with a supply voltage $U_S = 24$ V.

4.4 Sensor Self-Test

The sensor starts with a self-test once it is connected to the loop supply voltage.

During self-test, the sensor outputs the maximum sensor current (22 mA^{1}) and the <u>offset current</u> of 4 mA for a duration of 2 seconds. These currents can be measured with an ampere meter to ensure proper function.

If there is no error, the normal measuring operation starts afterwards, in which the sensor current corresponds to the current measured value.

There is a <u>LOOP error</u> if the sensor is not able to drive 22 mA¹). In this case, the sensor repeats the self-test until the error is fixed.

4.5 Measuring Mode

4.5.1 Sensitivity B_i

In measuring mode, the sensor output current i_{Sensor} is proportional to the vibration amplitude of the measured quantity *x*. A constant <u>offset current</u> of 4 mA is overlaid on this current for the sensor supply.

$i_{Sensor} = B_i \cdot a + 4 mA$

The proportionality factor B_i is called sensitivity. The sensitivity depends on the measuring range of the sensor. It results from the quotient of the current change at 100 % excitation and the measuring range.

¹⁾ 20 mA for order option with <u>limited output current</u>

$$B_i = \frac{(20 mA - 4 mA)}{Range} = \frac{16 mA}{Range}$$

	Range in m/s ²									
KSI84Ax	5	10	20	50)	100		200	500	
B_{ia} / mA/m/s ²	3,2	1,6	0,8	0,3	32 0,16		,	0,08	0,032	
	Range in mm/s									
KSI84Vx	10 12.7		2	0	25.4			40	50.8	
B _{iv} / mA/mm/s	1.6	1.26	0.	8	0.63		(0.4	0.315	
	Range in mm									
KSI84D	10	12.7	2	20		5.4		40	50.8	
B _{id} / mA/mm	1.6	1.26	0.	8	0.63		(0.4	0.315	

The following table shows the sensitivity of the acceleration and velocity types for different measuring ranges.

The sensitivity B_i changes only slightly over temperature due an electronic compensation. The remaining $TC(B_i)$ can be found in the <u>technical data</u>.

4.5.2 Calculation of measured quantity

The amplitude of the measured quantity (a, v or d) is determined from the sensor current as follows:

$$a, v, d = \frac{1}{B_i} \cdot (i_{Sensor} - 4 mA) = \frac{Range}{16 mA} \cdot (i_{Sensor} - 4 mA)$$

4.5.3 Offset Current and Noise

The offset current I_{off} of the sensor is **4 mA**. This is the **zero point** in measuring mode. The calibrated value is output while sensor elf-test for control.

A slightly larger current value is measured when no vibration excitation is present, the current in rest. This is the smallest output value in measuring mode. It consists of the offset current and the current of the sensor noise.

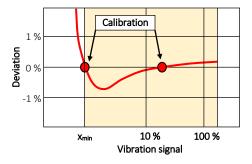
$I(0) = 4 mA + I_{Noise}$

The *Noise* depends on the type and is specified in the <u>type table</u> in m/s^2 or mm/s. Multiplication by the <u>sensitivity</u> B_i gives:

$$I_{\text{Noise}} = Noise \cdot \frac{16 \, mA}{Range}$$

The offset current I_{off} changes only slightly over temperature and time. For details see in technical data.

4.5.4 Linear Measuring Range xmin...xmax


The current loop sensor is calibrated at two vibration amplitudes to achieve optimum linearity of the sensor current over the entire measuring range.

The range for valid measurements extends from ...

	X _{min}	X max	Sensor types
(1)	1 % of range (4.16 mA)	$112 E^{0/2}$ of range	All types except (2)
(2)	2 % of range (4.32 mA)	112.5 % of range (22 mA) ¹⁾	KSI84 AP -xx- 10k -xxx KSI84AR-xx-xx- 5

Within this measuring range, the linearity of sensitivity (gain error) specified in the <u>technical</u> <u>data</u> is maintained.

If the vibration signal is **smaller** than the specified minimum x_{min} , the measurement error increases due to sensor noise and the limited resolution of the AD converter.

At vibration amplitudes greater

than the maximum x_{max} , the sensor current no longer increases. It remains constant at **22 mA**¹. A sensor with a larger measuring range must be selected.

4.5.5 Dynamic Range

The dynamic range is the maximum peak amplitude value that can be processed without overdriving the signal processing. It is shown in the following table for the acceleration, velocity or displacement signal and the different measuring ranges.

		Range in m/s ²								
KSI84Ax		5	10	20	5	0	100)	200	500
a_pk / m/s²	LP ≤ 1 kHz	47	47	95	19	95	390)	780	780
a_pk / m/s²	LP ≥ 5 kHz	-	47	47	9	5	195	5	390	780
		Range n mm/s								
KSI84Vx		10	12,7	2	0	2!	5,4	4	0	50 <i>,</i> 8
v_pk / mm/s	@160 Hz	95	95	19	90	1	90	38	80	380
v_pk / mm/s	@640 Hz	24	24	4	8	2	18	9)5	95
		Range in mm								
KSI84D		10	12,7	2	0	2	5,4	4	0	50 <i>,</i> 8
x_pk-pk / mm	@16 Hz	40	40	8	0	8	30	10	60	160
x_pk-pk / mm	@32 Hz	10	10	2	0	2	20	4	-0	40
x_pk-pk / mm	@160 Hz	0,4	0,4	0	,8	0	,8	1	,6	1,6

¹⁾ optional 20 mA (100 %) available

For **accelerometers**, the dynamic range is independent of frequency. The sensor setting LP of the low-pass filter defines the corresponding range of values.

For all **velocity** sensors, the dynamic range depends on the frequency. It is halved when the frequency doubles.

The dynamic range of the **displacement** sensors depends strongly on the frequency. 100 % of measuring range can only be used at frequencies $f \le 32$ Hz. At higher frequencies, the measuring range is limited. It decreases by a factor ¹/₄ with each doubling of the frequency.

4.6 Overload Display

To signal an existing overload, the sensor outputs the maximum output current of 22 mA^{1} . The overload does not necessarily have to be in the linear frequency range of the sensor. It can also be within the stopband of the sensor type.

If there is an overload, the measurement result is incorrect and a sensor with a larger measuring range must be used.

4.7 Measurement Acquisition

The current output of the sensor is updated every 0.5 seconds. The only exceptions are the types KSI84AR-1k-10k-xx, where the update rate is 62.5 ms.

The RMS measurement is based on all samples within this time window.

The PEAK measurement uses the samples from two consecutive time windows. This results in a PEAK hold time of 1s.

4.7.1 Averages Filter - Settling Time

To reduce signal ripple by low frequencies and to improve the signal-to-noise ratio, the output signal is additionally filtered using a moving average filter. The number of averages N is adjustable.

By **default**, the sensor is delivered with the average filter setting N = auto. In this mode the number of averages N depends on the amplitude mode (rms, peak) and on the high pass filter setting.

	average filter= auto					
HP-Filter	RMS	PEAK				
1.5 Hz / 3 Hz / 10 Hz	N = 8					
30 Hz / 100 Hz	N = 4	N = 8				
1 kHz	N = 1					

Optionally, the averaging filter can also be obtained with the settings N = 1, 2, 4, 8. The setting of the average filter can also be adjusted afterwards.

¹⁾ 20 mA for order option with <u>limited output current</u>

The averaging filter causes a signal delay. If the vibration signal changes abruptly, the sensor signal only changes smoothly. The signal change is not completed until the settling time T has elapsed.

The table below shows the relationship between the number of averages N and the minimal settling time T.

N	PEAK	RMS, HP < 1 kHz	RMS, HP = 1 kHz		
1	T = (T = 0,5 s			
2	T =	T = 125 ms			
4	T =	T = 2 s			
8	T =	4 s	T = 0,5 s		

We recommend to use a short settling time for the use of the sensor in a closed control loop. Please specify when ordering: N=1 or N=2.

4.8 Total Accuracy

All vibration sensors of the KSI84xx family are individually measured and calibrated before delivery. Calibration is performed both electrically and mechanically in our certified <u>vibration measurement laboratory</u>.

Systematic errors caused by temperature are largely corrected by signal processing.

The following overview contains the most important error quantities to estimate the total accuracy of the sensor.

Error quantities	Ma	x	Importance
Basic accuracy of the	2	%	Accuracy of the sensor sine calibration (at a
nominal range			certain amplitude and frequency, at T = 23 °C)
Linearity	2	%	Additional error at any amplitude. The typical
			error function is shown in chapter 4.5.4.
			The error maximum is at the lower end of the
			linear measuring range.
Temperature	E_{T}	%	Additional error at any temperature within the
			operating temperature range.
			$E_{\rm T}(T) = TC(B_i) \cdot (T - 23 ^{\circ}C)$
Frequency response	1	%	Additional error due to deviation of sensor
			frequency response from ideal frequency response
Basic accuracy of	1	μΑ	These errors influence the zero point of the
offset current			sensor. They effect to the total error only at
Offset current drift	see	<u>5.1</u>	very low vibration levels.
Noise	see	5.5	

4.9 Error Messages

If the sensor current is between 4 mA and 22 mA¹⁾, the sensor is in normal operational mode.

Any current outside this range indicates a specific error. The following table shows the values used.

Current	Error	Cause	Remedy
	LOOP	The sensor cannot	Restart the sensor.
	Error	output the correct	There is a LOOP-Error if the
		current value because	sensor remains in <u>self-test</u> after
		the current loop	restart.
		proper setup	→ follow steps 4.9.1
3,75 mA	SENSOR	Die Signalverarbeitung	Restart the sensor.
	Error	des Sensors arbeitet	There is a SENSOR-Error if the
		nicht normal.	Sensor does not start with the
			self-test. The sensor constantly
			outputs 3,75 mA.
			→ Replace sensor
22mA ¹⁾	<u>Overload</u>	Vibration signal too	Use a sensor type with a higher
	(OVL)	high	measuring range.
			→ Replace sensor

4.9.1 Steps to Fix a LOOP Error

- 1. Check the value of the load resistance RL and reduce it if possible
- 2. Check the value of the loop supply voltage and increase it if possible

¹⁾ 20 mA for order option with <u>limited output current</u>

5 Technical Data

5.1 Technical Character	istics	of the 4-20mA	transducer	
Sensor system			Piezoelectric accelerometer	
Measured quantity	Q	KSI84 A x-x-x-x KSI84 V x-x-x-x KSI84 D -x-x-x	according to <u>type code</u> Acceleration Velocity Displacement	m/s² mm/s mm _{pk-pk}
Mode	М	KSI84x R - <i>x-x-x</i> KSI84x P - <i>x-x-x</i>	according to <u>type code</u> RMS PEAK	pk
Linear frequency range High pass filter ¹⁾ -3dB Low pass filter ²⁾ -3dB	f _{нр} f _{LP}	KSI84xx- HP - <i>x-x</i> KSI84xx- <i>x</i> - LP - <i>x</i>	according to <u>type code</u> 1.5 / 3 / 10 / 30 / 100 / 1k 100 / 300 / 1 k / 5k / 10k	Hz Hz
Nominal range ¹⁾ \pm accuracy	XN	@20 mA, @23°C KSI84Ax- <i>x-x</i> - R KSI84Vx- <i>x-x</i> - R KSI84D- <i>x-x</i> - R	5/10/20/50/100/200/500±2 % 10/12.7/20/25.4/40/50.8±2 % 10/12.7/20/25.4/40/50.8±5 %	m/s² mm/s mm _{pk-pk}
Linear measuring range	X _{min} .	X _{max}	1112.5 ³⁾ ; (2112.5) ⁴⁾	% of <i>x</i> _N
Linearity of sensitivity (Gain error)	δB_{ix}	@ <i>x_{min} x_{max}</i> @23°C	± 2	%
Temperature coefficient of sensitivity	TC(B)	+ 0.015	%/K
Max. offset drift over temp.	ΔI_{off}	@T _{min} T _{max}	± 4	μA
Max. offset drift over time	ΔI_{off}	@5.000 h	+ 1	μA
Resolution (noise)			see <u>type table</u>	
Transverse sensitivity	G90m	ах	< 5	%
5.2 Electrical Characteri	stics		•	
Current output	lout		422 ³⁾	mA
Loop supply voltage	Us		1030	V
Settling time 5)	Т	@f _{HP} =1kHz; RMS	< 0,125	S
	_	@all types	< 5	S
Load resistance	R∟		< 40 · (U _s - 7)	Ω
Ground insulation		@250 VDC	> 4000	MΩ
Dielectric strength	Uiso		350	VDC
5.3 Mechanical Characte				
Dimensions	Ø/I	า	SW22 / 43.1	mm
Weight	m		60 / 2.1	g / oz
Housing material			Stainless steel	
Mounting			M8 thread in base	
Sensor tightening torque			8	Nm
Connector			Binder 713, 4 pole, male	

¹⁾ Type code contains only integer values without decimal places

²⁾ The condition LP \geq 10 HP must be met

³⁾ 20 mA (100 %) for order option with <u>limited output current</u>

⁴⁾ Restricted linear measuring range for type code KSI84AP-x-10k-x and KSI84AR-x-x-5

⁵⁾ <u>Settling time</u> for average filter= auto, 1...5 (0,125...0,6) s optionally available

5.4 Environmental Characteristics						
Operating temperature	T _{min} / T _{max}	-40 / 100	°C			
Protection grade		IP68				
Destruction shock limit	amax	5000	g			
EMI		EN 61326-2-3:2013				

5.5 Type Tables

5.5.1 Acceleration, RMS

Q	М	HP	LP	Range	Type code	Noise
		Hz	Hz	m/s²		m/s²
				5	KSI84AR-1- <mark>LP</mark> -5	0,005
				10	KSI84AR-1-LP-10	0,005
			100	20	KSI84AR-1-LP-20	0,005
			300	50	KSI84AR-1- <mark>LP</mark> -50	0,007
			1k	100	KSI84AR-1-LP-100	0,007
				200	KSI84AR-1- LP -200	0,008
				500	KSI84AR-1- LP -500	0,016
				10	KSI84AR-1-5k-10	0,020
		1 5		20	KSI84AR-1-5k-20	0,020
		1,5	5k	50	KSI84AR-1-5k-50	0,030
			ЭК	100	KSI84AR-1-5k-100	0,060
				200	KSI84AR-1-5k-200	0,080
				500	KSI84AR-1-5k-500	0,160
		MC		20	KSI84AR-1-10k-20	0,050
	DAAC			50	KSI84AR-1-10k-50	0,090
а	RMS		10k	100	KSI84AR-1-10k-100	0,180
				200	KSI84AR-1-10k-200	0,200
				500	KSI84AR-1-10k-500	0,250
				5	KSI84AR-HP-LP-5	0,005
		-		10	KSI84AR-HP-LP-10	0,005
		3	100 1)	20	KSI84AR-HP-LP-20	0,005
		10 30 100	300 1)	50	KSI84AR-HP-LP-50	0,007
			1k	100	KSI84AR-HP-LP-100	0,007
	100 1k	100		200	KSI84AR-HP-LP-200	0,008
				500	KSI84AR-HP-LP-500	0,016
				20	KSI84AR-1k-10k-20	0,050
				50	KSI84AR-1k-10k-50	0,090
		1k	10k	100	KSI84AR-1k-10k-100	0,180
				200	KSI84AR-1k-10k-200	0,200
				500	KSI84AR-1k-10k-500	0,250

¹⁾ The condition $LP \ge 10$ HP must be met

5.5.2 Acceleration, PEAK

Q	М	HP	LP	Range	Type code	Noise
		Hz	Hz	m/s² pk		m/s² pk
				10	KSI84AP-1- <mark>LP</mark> -10	0.005
			100	20	KSI84AP-1- LP -20	0.005
			100 300	50	KSI84AP-1- <mark>LP</mark> -50	0.007
			300 1k	100	KSI84AP-1- <mark>LP</mark> -100	0.007
			IK	200	KSI84AP-1- LP -200	0.008
				500	KSI84AP-1- LP -500	0.016
				10	KSI84AP-1-5k-10	0.020
		1.5		20	KSI84AP-1-5k-20	0.020
		1.5	ГĿ	50	KSI84AP-1-5k-50	0.030
			5k	100	KSI84AP-1-5k-100	0.060
				200	KSI84AP-1-5k-200	0.080
				500	KSI84AP-1-5k-500	0.160
	Peak			50	KSI84AP-1-10k-50	0.090
а	Реак		10k	100	KSI84AP-1-10k-100	0.180
			TOK	200	KSI84AP-1-10k-200	0.200
				500	KSI84AP-1-10k-500	0.250
		3	100 ¹⁾ 300 ¹⁾ 1k	10	KSI84AP- <mark>HP-LP</mark> -10	0.005
				20	KSI84AP- <mark>HP-LP</mark> -20	0.005
		10		50	KSI84AP- <mark>HP-LP</mark> -50	0.007
		30		100	KSI84AP- <mark>HP-LP</mark> -100	0.007
		100		200	KSI84AP- <mark>HP-LP</mark> -200	0.008
				500	KSI84AP- <mark>HP-LP</mark> -500	0.016
				50	KSI84AP-1k-10k-50	0.090
		1k	104	100	KSI84AP-1k-10k-100	0.180
		TK	10k	200	KSI84AP-1k-10k-200	0.200
				500	KSI84AP-1k-10k-500	0.250

¹⁾ The condition $LP \ge 10$ HP must be met

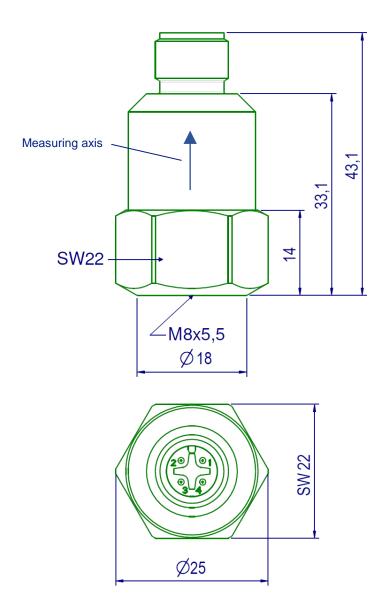
5.5.3 Velocity, RMS

Q	М	HP	LP	Range	Type code	Noise	
		Hz	Hz	mm/s		mm/s	
		1,5	100 300,	40	KSI84VR-1- LP -40	0,100	
	v RMS	RMS 100	1,5 500, 1k		50,8	KSI84VR-1- <mark>LP</mark> -50	0,100
v			100	20	KSI84VR-3-LP-20		
			300	25,4	KSI84VR-3-LP-25	0,035	
		5	3 300 1k	40	KSI84VR-3-LP-40	0,055	
			TK	50 <i>,</i> 8	KSI84VR-3-LP-50		

Velocity, RMS (continued)

Q	М	HP	LP	Range	Type code	Noise
		Hz	Hz	mm/s		mm/s
				10	KSI84VR-10- LP -10	
			100	12,7	KSI84VR-10- LP -12	
		10 ¹⁾	100 300	20	KSI84VR-10- LP -20	0.010
		10 -/	300 1k ¹⁾	25,4	KSI84VR-10- LP -25	0,010
			TK -/	40	KSI84VR-10- LP -40	
			50 <i>,</i> 8	KSI84VR-10- LP -50		
				10	KSI84VR-30- LP -10	
				12,7	KSI84VR-30- LP -12	
		30	300	20	KSI84VR-30- LP -20	0.005
			1k	25,4	KSI84VR-30- LP -25	0,005
				40	KSI84VR-30- LP -40	
				50,8	KSI84VR-30- LP -50	

¹⁾ Complies with the requirements of <u>ISO 2954</u>


5.5.4 Velocity, PEAK

Q	М	HP	LP	Range	Type code	Noise				
		Hz	Hz	mm/s pk		mm/s pk				
			100	20	KSI84VP-10- LP -20					
		300 1k	25.4	KSI84VP-10- LP -25	0.010					
				40	KSI84VP-10- LP -40	0.010				
	v Peak		TK	50.8	KSI84VP-10- LP -50					
.,		Deels		10	KSI84VP-30- LP -10					
v		Peak		reak		30 300		12.7	KSI84VP-30- LP -12	
							20	KSI84VP-30- LP -20	0.005	
		30 1k	25.4	KSI84VP-30- LP -25	0.005					
				40	KSI84VP-30- LP -40					
					50.8	KSI84VP-30- LP -50				

5.5.5 Displacement

Q	М	HP	LP	Range	Type code	Noise
		Hz	Hz	mm pk-pk		mm pk-pk
				10	KSI84D-3-300-10	0,016
Peak-	- 3	200	12,7	KSI84D-3-300-12	0,020	
			20	KSI84D-3-300-20	0,032	
d	Peak	5	300	25,4	KSI84D-3-300-25	0,040
				40	KSI84D-3-300-40	0,064
				50,8	KSI84D-3-300-50	0,080

5.6 Dimensions

Limited Warranty

Metra warrants for a period of

24 months

that its products will be free from defects in material or workmanship and shall conform to the specifications current at the time of shipment.

The warranty period starts with the date of invoice. The customer must provide the dated bill of sale as evidence. The warranty period ends after 24 months. Repairs do not extend the warranty period.

This limited warranty covers only defects which arise as a result of normal use according to the instruction manual.

Metra's responsibility under this warranty does not apply to any improper or inadequate maintenance or modification and operation outside the product's specifications. Shipment to Metra will be paid by the customer.

The repaired or replaced product will be sent back at Metra's expense.

Declaration of Conformity

According to EMC Directive 2014/30/EC

Product: Vibration Sensor Type: KSI84xx

It is hereby certified that the above mentioned product complies with the demands pursuant to the following standards:

> EN 61326-2-3:2013 EN61000-6-4:2006 + A1:2011 EN61000-6-2:2005

The producer is responsible for this declaration

Manfred Weber Metra Mess- und Frequenztechnik in Radebeul e.K. Meissner Str. 58, D-01445 Radebeul declared by:

Michael Weber, Radebeul, July 28, 2020